Characterization of the p53 Response to Oncogene-Induced Senescence

نویسندگان

  • Lidia Ruiz
  • Magali Traskine
  • Irene Ferrer
  • Estrella Castro
  • Juan F. M. Leal
  • Marcelline Kaufman
  • Amancio Carnero
چکیده

BACKGROUND P53 activation can trigger various outcomes, among them reversible growth arrest or cellular senescence. It is a live debate whether these outcomes are influenced by quantitative or qualitative mechanisms. Furthermore, the relative contribution of p53 to Ras-induced senescence is also matter of controversy. METHODOLOGY/PRINCIPAL FINDINGS This study compared situations in which different signals drove senescence with increasing levels of p53 activation. The study revealed that the levels of p53 activation do not determine the outcome of the response. This is further confirmed by the clustering of transcriptional patterns into two broad groups: p53-activated or p53-inactivated, i.e., growth and cellular arrest/senescence. Furthermore, while p53-dependent transcription decreases after 24 hrs in the presence of active p53, senescence continues. Maintaining cells in the arrested state for long periods does not switch reversible arrest to cellular senescence. Together, these data suggest that a Ras-dependent, p53-independent, second signal is necessary to induce senescence. This study tested whether PPP1CA (the catalytic subunit of PP1alpha), recently identified as contributing to Ras-induced senescence, might be this second signal. PPP1CA is induced by Ras; its inactivation inhibits Ras-induced senescence, presumably by inhibiting pRb dephosphorylation. Finally, PPP1CA seems to strongly co-localize with pRb only during senescence. CONCLUSIONS The levels of p53 activation do not determine the outcome of the response. Rather, p53 activity seems to act as a necessary but not sufficient condition for senescence to arise. Maintaining cells in the arrested state for long periods does not switch reversible arrest to cellular senescence. PPP1CA is induced by Ras; its inactivation inhibits Ras-induced senescence, presumably by inhibiting pRb dephosphorylation. Finally, PPP1CA seems to strongly co-localize with pRb only during senescence, suggesting that PP1alpha activation during senescence may be the second signal contributing to the irreversibility of the senescent phenotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence.

Here we report that RNA interference against ATM inhibited p53 accumulation in cells expressing oncogenic STAT5 and cooperated with Rb inactivation to suppress STAT5A-induced senescence. Knocking down ATM was also effective to bypass E2F1-induced senescence and in combination with Rb inactivation, inhibited RasV12-induced senescence. Cells that senesced in response to ca-STAT5A or RasV12 accumu...

متن کامل

The relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte senescence

Oncogene-induced senescence acts as a barrier against tumour formation and has been implicated as the mechanism preventing the transformation of benign melanocytic lesions that frequently harbour oncogenic B-RAF or N-RAS mutations. In the present study we systematically assessed the relative importance of the tumour suppressor proteins p53, p21(Waf1), pRb and p16(INK4a) in mediating oncogene-in...

متن کامل

Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occu...

متن کامل

Effects of alpha-mangostin on memory senescence induced by high glucose in human umbilical vein endothelial cells

Objective(s): Hyperglycemia induces cellular senescence in various body cells, such as vascular endothelial cells. Since the vessels are highly distributed in the body and nourish all tissues, vascular damages cause diabetes complications such as kidney failure and visual impairment. Alpha-mangostin is a xanthone found in mangosteen fruit with protective effects in met...

متن کامل

A p53/ARF-dependent anticancer barrier activates senescence and blocks tumorigenesis without impacting apoptosis.

UNLABELLED In response to oncogene activation and oncogene-induced aberrant proliferation, mammalian cells activate apoptosis and senescence, usually via the p53-ARF tumor-suppressor pathway. Apoptosis is a known barrier to cancer and is usually downregulated before full malignancy, but senescence as an anticancer barrier is controversial due to its presence in the tumor environment. In additio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008